Hmgb1 inhibits Klotho expression and malignant phenotype in melanoma cells by activating NF-κB
نویسندگان
چکیده
The molecular and cellular mechanisms behind the involvement of inflammation in melanoma have not been fully elucidated. In this study, knockdown of Hmgb1 expression increased apoptosis, reduced invasion and p-NF-κB expression, but increased Klotho protein level in melanoma tumor cells. The effect of Hmgb1 knockdown was overcome by LPS. Introduction of exogenous Hmgb1 significantly decreased apoptosis, increased invasion, elevated p-NF-κB, but lowered Klotho protein level in melanoma cells. The effect of exogenous Hmgb1 was agonized by NF-κB inhibitor CAPE. Hmgb1 knockdown activated, but exogenous Hmgb1 inactivated, p-IGF1R/p-PI3K p-85/p-Akt/p-mTOR signaling. Knockdown of Klotho gene expression significantly decreased apoptosis, increased invasion in melanoma cells, and inhibited xenograft A375 tumor growth. A significantly high percentage of cells stained positive for p-NF-κB, but negative for Klotho, in melanoma tissues compared to normal and benign skin tissues. The positive p-NF-κB and negative Klotho protein expression correlated with poor prognosis in melanoma patients. Multivariate analysis revealed an independent association between p-NF-κB / Klotho protein level and overall survival. In conclusion, Hmgb1 can inhibit Klotho gene expression and malignant phenotype in melanoma cells through activation of NF-κB signaling.
منابع مشابه
Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملDown-regulation of HMGB1 expression by shRNA constructs inhibits the bioactivity of urothelial carcinoma cell lines via the NF-κB pathway
The high mobility group box 1 (HMGB1), which is a highly conserved and evolutionarily non-histone nuclear protein, has been shown to associate with a variety of biological important processes, such as transcription, DNA repair, differentiation, and extracellular signalling. High HMGB1 expression has been reported in many cancers, such as prostate, kidney, ovarian, and gastric cancer. However, t...
متن کاملIncreased Cytotoxicity of Cisplatin in SK-MEL 28 Melanoma Cells upon Down-Regulation of Melanoma Inhibitor of Apoptosis Protein
Background: Malignant melanoma is a highly metastatic cutaneous cancer and typically refractory to chemotherapy. Deregulated apoptosis has been identified as a major cause of cancer drug resistance, and upregulated expression of the inhibitor of apoptosis protein melanom, an inhibitor of apoptosis (ML-IAP) is frequent in melanoma. Methods: Based on the conclusion that ML-IAP expression contribu...
متن کاملUric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway
Uric acid (UA) is a risk factor for endothelial dysfunction, a process in which inflammation may play an important role. UA increases high mobility group box chromosomal protein 1 (HMGB1) expression and extracellular release in endothelial cells. HMGB1 is an inflammatory cytokine that interacts with the receptor for advanced glycation end products (RAGE), inducing an oxidative stress and inflam...
متن کاملAlpha-Catulin Contributes to Drug-Resistance of Melanoma by Activating NF-κB and AP-1
Melanoma is the most dangerous type of skin cancer accounting for 48,000 deaths worldwide each year and an average survival rate of about 6-10 months with conventional treatment. Tumor metastasis and chemoresistance of melanoma cells are reported as the main reasons for the insufficiency of currently available treatments for late stage melanoma. The cytoskeletal linker protein α-catulin (CTNNAL...
متن کامل